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Abstract

Previous studies have shown that neural ma-
chine translation (NMT) models can bene-
fit from explicitly modeling translated (PAST)
and untranslated (FUTURE) source contents as
recurrent states (Zheng et al., 2018). How-
ever, this less interpretable recurrent process
hinders its power to model the dynamic up-
dating of PAST and FUTURE contents during
decoding. In this paper, we propose to model
the dynamic principles by explicitly separating
source words into groups of translated and un-
translated contents through parts-to-wholes as-
signment. The assignment is learned through a
novel variant of routing-by-agreement mecha-
nism (Sabour et al., 2017), namely Guided Dy-
namic Routing, where the translating status at
each decoding step guides the routing process
to assign each source word to its associated
group (i.e., translated or untranslated content)
represented by a capsule, enabling translation
to be made from holistic context. Experiments
show that our approach achieves substantial
improvements over both RNMT and Trans-
former by producing more adequate transla-
tions. Extensive analysis demonstrates that our
method is highly interpretable, which is able to
recognize the translated and untranslated con-
tents as expected.1

1 Introduction

Neural machine translation (NMT) generally
adopts an attentive encoder-decoder frame-
work (Sutskever et al., 2014; Vaswani et al., 2017),
where the encoder maps a source sentence into
a sequence of contextual representations (source
contents), and the decoder generates a target sen-
tence word-by-word based on part of the source
content assigned by an attention model (Bahdanau

1Codes are released at https://github.com/
zhengzx-nlp/dynamic-nmt.

et al., 2015). Like human translators, NMT sys-
tems should have the ability to know the rel-
evant source-side context for the current word
(PRESENT), as well as recognize what parts in the
source contents have been translated (PAST) and
what parts have not (FUTURE), at each decoding
step. Accordingly, the PAST, PRESENT and FU-
TURE are three dynamically changing states dur-
ing the whole translation process.

Previous studies have shown that NMT models
are likely to face the illness of inadequate transla-
tion (Kong et al., 2019), which is usually embod-
ied in over- and under-translation problems (Tu
et al., 2016, 2017). This issue may be attributed
to the poor ability of NMT of recognizing the dy-
namic translated and untranslated contents. To
remedy this, Zheng et al. (2018) first demonstrate
that explicitly tracking PAST and FUTURE con-
tents helps NMT models alleviate this issue and
generate better translation. In their work, the run-
ning PAST and FUTURE contents are modeled as
recurrent states. However, the recurrent process
is still non-trivial to determine which parts of the
source words are the PAST and which are the FU-
TURE, and to what extent the recurrent states rep-
resent them respectively, this less interpretable na-
ture is probably not the best way to model and ex-
ploit the dynamic PAST and FUTURE.

We argue that an explicit separation of the
source words into two groups, representing PAST

and FUTURE respectively (Figure 1), could be
more beneficial not only for easy and direct recog-
nition of the translated and untranslated source
contents, but also for better interpretation of
model’s behavior of the recognition. We formu-
late the explicit separation as a procedure of parts-
to-wholes assignment: the representation of each
source words (parts) should be assigned to its asso-
ciated group of either PAST or FUTURE (wholes).

In this paper, we implement this idea using Cap-

https://github.com/zhengzx-nlp/dynamic-nmt
https://github.com/zhengzx-nlp/dynamic-nmt
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Figure 1: An example of separation of PAST and FU-
TURE in machine translation. When generating the
current translation “his”, the source tokens “〈BOS〉”,
“布什(Bush)” and phrase “为...辩护(defend)” are the
translated contents (PAST), while the remaining tokens
are untranslated contents (FUTURE).

sule Network (Hinton et al., 2011) with routing-
by-agreement mechanism (Sabour et al., 2017),
which has demonstrated its appealing strength of
solving the problem of parts-to-wholes assign-
ment (Hinton et al., 2018; Gong et al., 2018; Dou
et al., 2019; Li et al., 2019), to model the separa-
tion of the PAST and FUTURE:

1. We first cast the PAST and FUTURE source
contents as two groups of capsules.

2. We then design a novel variant of the routing-
by-agreement mechanism, called Guided Dy-
namic Routing (GDR), which is guided by
the current translating status at each decoding
step to assign each source word to its associ-
ated capsules by assignment probabilities for
several routing iterations.

3. Finally, the PAST and FUTURE capsules ac-
cumulate their expected contents from rep-
resentations, and are fed into the decoder
to provide a time-dependent holistic view of
context to decide the prediction.

In addition, two auxiliary learning signals facili-
tate GDR’s acquiring of our expected functional-
ity, other than implicit learning within the training
process of the NMT model.

We conducted extensive experiments and anal-
ysis to verify the effectiveness of our pro-
posed model. Experiments on Chinese-to-
English, English-to-German, and English-to-
Romanian show consistent and substantial im-
provements over the Transformer (Vaswani et al.,
2017) or RNMT (Bahdanau et al., 2015). Visual-
ized evidence proves that our approach does ac-
quire the expected ability to separate the source
words into PAST and FUTURE, which is highly in-
terpretable. We also observe that our model does
alleviate the inadequate translation problem: Hu-
man subjective evaluation reveals that our model

produces more adequate and high-quality transla-
tions than Transformer. Length analysis regarding
source sentences shows that our model generates
not only longer but also better translations.

2 Neural Machine Translation

Neural models for sequence-to-sequence tasks
such as machine translation often adopt an
encoder-decoder framework. Given a source
sentence x = 〈x1, . . . , xI〉, a NMT model
learns to predict a target sentence y =
〈y1, . . . , yT 〉 by maximizing the conditional prob-
abilities p(y|x) =

∏T
t=1 p(yt|y<t,x). Specifi-

cally, an encoder first maps the source sentence
into a sequence of encoded representations:

h = 〈h1, . . . ,hI〉 = fe(x), (1)

where fe is the encoder’s transformation function.
Given the encoded representations of the source
words, a decoder generates the sequence of target
words y autoregressively:

zt = fd(y<t,at), (2)

p(yt|y<t,x) = softmax(E(yt)
>zt), (3)

where E(yt) is the embedding of yt. The current
word is predicted based on the decoder state zt. fd
is the transformation function of decoder, which
determines zt based on the target translation tra-
jectory y<t, and the lexical-level source content
at that is most relevant to PRESENT translation by
an attention model (Bahdanau et al., 2015). Ide-
ally, with all the source encoded representations
in the encoder, NMT models should be able to
update translated and untranslated source contents
and keep them in mind. However, most of exist-
ing NMT models lack an explicit functionality to
maintain the translated and untranslated contents,
failing to distinguish the source words being of ei-
ther PAST or FUTURE (Zheng et al., 2018), which
is likely to suffer from severe inadequate transla-
tion problem (Tu et al., 2016; Kong et al., 2019).

3 Approach

Motivation Our intuition arises straightfor-
wardly: if we could tell the translated and untrans-
lated source contents apart by directly separating
the source words into PAST and FUTURE cate-
gories at each decoding step, the PRESENT trans-
lation could benefit from the dynamically holistic
context (i.e., PAST+ PRESENT+ FUTURE). To this



purpose, we should design a mechanism by which
each word could be recognized and assigned to a
distinct category, i.e., PAST or FUTURE contents,
subject to the translation status at present. This
procedure can be seen as a parts-to-wholes assign-
ment, in which the encoder hidden states of the
source words (parts) are supposed to be assigned
to either PAST or FUTURE (wholes).

Capsule network (Hinton et al., 2011) has
shown its capability of solving the problem of as-
signing parts to wholes (Sabour et al., 2017). A
capsule is a vector of neurons which represents
different properties of the same entity from the
input (Sabour et al., 2017). The functionality re-
lies on a fast iterative process called routing-by-
agreement, whose basic idea is to iteratively re-
fine the proportion of how much a part should be
assigned to a whole, based on the agreement be-
tween the part and the whole (Dou et al., 2019).
Therefore, it is appealing to investigate if this
mechanism could be employed for our intuition.

3.1 Guided Dynamic Routing (GDR)
Dynamic routing (Sabour et al., 2017) is an imple-
mentation of routing-by-agreement, where it runs
intrinsically without any external guidance. How-
ever, what we expect is a mechanism driven by the
decoding status at present. Here we propose a vari-
ant of dynamic routing mechanism called Guided
Dynamic Routing (GDR), where the routing pro-
cess is guided by the translating information at
each decoding step (Figure 2).

Formally, we cast the source encoded represen-
tations h of I source words to be input capsules,
while we denote Ω as output capsules, which con-
sist of J entries. Initially, we assume that J/2 of
them (ΩP ) represent the PAST contents, and the
rest J/2 capsules (ΩF ) represent the FUTURE:

ΩP = 〈ΩP
1 , · · · ,ΩP

J/2〉, ΩF = 〈ΩF
1 , · · · ,ΩF

J/2〉.

where each capsule is represented by a dc-
dimension vector. We assemble these PAST and
FUTURE capsules together, which are expected to
competing for source information, i.e., we now
have Ω = ΩP ∪ ΩF . We will describe how to
teach these capsules to retrieve their relevant parts
from source contents in the Section 3.3. Note that
we employ GDR at every decoding step t to obtain
the time-dependent PAST and FUTURE and omit
the subscript t for simplicity.

In the dynamic routing process, each vector out-
put of capsule j is calculated with a non-linear

Guided Dynamic Routing

Future Capsules

zth1 h2 h3 h4

ΩFPast Capsules ΩP

Encoder’s representations of source words
Current Decoder 
hidden state

Guides

Figure 2: Illustration of the Guided Dynamic Routing.

squashing function (Sabour et al., 2017):

Ωj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

, sj =
I∑
i

cijvij , (4)

where sj is the accumulated input of capsule Ωj ,
which is a weighted sum over all vote vectors vij .
vij is transformed from the input capsule hi:

vij = Wjhi, (5)

where Wj ∈ Rd×dc is a trainable matrix for j-th
output capsule2. cij is the assignment probabil-
ity (i.e. the agreement) that is determined by the
iterative dynamic routing. The assignment prob-
abilities ci· associated with each input capsule hi
sum to 1:

∑
j cij = 1, and are computed by:

cij = softmax(bij), (6)

where routing logit bij is initialized as all 0s,
which measures the degree that hi should be sent
to Ωj . The initial assignment probabilities are then
iteratively updated by measuring the agreement
between the vote vector vij and capsule Ωj by an
MLP, considering the current decoding state zt:

bij ← bij +w>tanh(Wb[zt;vij ; Ωj ]), (7)

where Wb ∈ Rd+dc∗2 and w ∈ Rdc are learnable
parameters. Instead of using simple scalar prod-
uct, i.e., bij = v>ijΩj (Sabour et al., 2017), which
could not consider the current decoding state as
a condition signal, we resort to the MLP to take
zi into account inspired by MLP-based attention
mechanism (Bahdanau et al., 2015; Luong et al.,
2015). That is why we call it “guided” dynamic
routing.

2Note that unlike Sabour et al. (2017), where each pair of
input capsule i and output capsule j has a distinct transfor-
mation matrix Wij as their numbers are predefined (I × J
transformation matrices in total), here we share the transfor-
mation matrix Wj of output capsule j among all the input
capsules due to the varied amount of the source words. So
there are J transformation matrices in our model.



Algorithm 1 Guided Dynamic Routing (GDR)
Input: Encoder hidden state h, current decoding hidden

state zt, and number of routing iterations r.
Output: PAST, FUTURE, and redundant capsules.
procedure: GDR(h, zt, r)
1: ∀i ∈ h, j ∈ Ω : bij ← 0,vij ←Wjhi . Initializing

routing logits, and vote vectors.
2: for r iterations do
3: ∀i ∈ h, j ∈ Ω: Compute assign. probs. cij by Eq. 6
4: ∀j ∈ Ω : Compute capsules Ωj by Eq. 4
5: ∀i ∈ h, j ∈ Ω : Update routing logits bij by Eq. 7
6: end for
7: [ΩP ; ΩF ; ΩR] = Ω . Return past, future, and

redundant capsules
8: return ΩP ,ΩF ,ΩR

Now with the awareness of the current decoding
status, the hidden state (input capsule) of a source
word prefers to send its representation to the out-
put capsules, which have large routing agreements
associated with the input capsule. After a few
rounds of iterations, the output capsules are able to
ignore all but the most relevant information from
the source hidden states, representing a distinct as-
pect of either PAST or FUTURE.

Redundant Capsules In some cases, some parts
of the source sentence may belong to neither past
contents nor future contents. For example, func-
tion words in English (e.g., “the”) could not find
its counterpart translation in Chinese. There-
fore, we add additional Redundant Capsules ΩR

(also known as “orphan capsules” in Sabour et al.
(2017)), which are expected to receive higher rout-
ing assignment probabilities when a source word
should not belong to either PAST or FUTURE.

We show the algorithm of our guided dynamic
routing in Algorithm 1.

3.2 Integrating into NMT

The proposed GDR can be applied on the top
of any sequence-to-sequence architecture, which
does not require any specific modification. Let us
take a Transformer-fashion architecture as exam-
ple (Figure 3). Given a sentence x = 〈x1, . . . , xI〉,
the encoder leveragesN stacked identical layers to
map the sentence into contextual representations:

h(l) = EncoderLayer(h(l−1)),

where the superscript l indicates layer depth.
Based on the encoded source representations hN ,
a decoder generates translation word by word. The
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Figure 3: Illustration of our architecture.

decoder also has N stacked identical layers:

z(l) = DecoderLayer(z(l−1),a(l)),

a(l) = Attention(z(l−1),h(N)),

where a(l) is the lexical-level source context as-
signed by an attention mechanism between current
decoder layer and the last encoder layer. Given
the hidden states of the last decoder layer z(N),
we perform our proposed guided dynamic routing
(GDR) mechanism to compute the PAST and FU-
TURE contents from the source side and obtain the
holistic context of each decoding step:

ΩP ,ΩF ,ΩR = GDR(z(N),h(N)),

o = FeedForward(z(N),ΩP ,ΩF ) + z(N),

where o = 〈o1, · · · ,oT 〉 is the sequence of the
holistic context of each decoding step. Based on
the holistic context, the output probabilities are
computed as:

p(yt|y≤t,x) = softmax(g(ot)).

The NMT model is now able to employ the dy-
namic holistic context for better generation.

3.3 Learning PAST and FUTURE as Expected
Auxiliary Guided Losses
To ensure that the dynamic routing process runs
as expected, we introduce the following auxiliary
guided signals to assist the learning process.

Bag-of-Word Constraint Weng et al. (2017)
propose a multitasking scheme to boost NMT by
predicting the bag-of-words of target sentence us-
ing the Word Predictions approach. Inspired by



this work, we introduce a BOW constraint to en-
courage the PAST and FUTURE capsules to be pre-
dictive of the preceding and subsequent bag-of-
words regarding each decoding step respectively:

LBOW =
1

T

T∑
t=0

(
− log pPRE(y≤t|ΩP

t )

− log pSUB(y≥t|ΩF
t )
)
,

where ppre(y≤t|ΩP
t ) and psub(y≥t|ΩF

t ) are the
predicted probabilities of the preceding bag-of-
words and subsequent words at decoding step t,
respectively. For instance, the probabilities of the
preceding bag-of-words are computed by:

pPRE(y<t|ΩP
t ) =

∏
τ∈[1,t]

pPRE(yτ |ΩP
t )

∝
∏
τ∈[1,t]

exp(E(yτ )>W P
BOWΩP

t ).

The computation of pSUB(y≥t|ΩF
t ) is similar. By

applying the BOW constraint, the PAST and FU-
TURE capsules can learn to reflect the target-side
past and future bag-of-words information.

Bilingual Content Agreement Intuitively, the
translated source contents should be semantically
equivalent to the translated target contents, and so
do untranslated contents. Thus, a natural idea is
to encourage the source PAST contents, modeled
by the PAST capsule to be close to the target PAST

representation at each decoding step, and the same
for the FUTURE. Hence, we introduce a Bilingual
Content Agreement (BCA) to require the bilingual
semantic-equivalent contents to be predictive to
each other by Minimum Square Estimation (MSE)
loss:

LBCA =
1

T

T∑
t=1

‖ΩP
t −W P

BCA(
1

t

t∑
τ=1

zτ )‖2

+ ‖ΩF
t −W F

BCA(
1

T−t+1

T∑
τ=t

zτ )‖2,

where the target-side past information is repre-
sented by the averaged results of the decoder hid-
den states of all preceding words, while the aver-
age of subsequent decoder hidden states represents
the target-side future information.

Training
Given the dataset of parallel training examples
{〈x(m),y(m)〉}Mm=1, the model parameters are

trained by minimizing the loss L(θ), where θ is
the set of all the parameter of the proposed model:

L(θ)=
1

M

M∑
m=1

(
−log p(y(m)|x(m))

+ λ1 · LBoW + λ2 · LBCA

)
,

where λ1 and λ2 are hyper-parameters.

4 Experiment

We mainly evaluated our approaches on the widely
used NIST Chinese-to-English (Zh-En) transla-
tion task. We also conducted translation exper-
iments on WMT14 English-to-German (En-De)
and WMT16 English-to-Romanian (En-Ro):

1. NIST Zh-En. The training data consists of
1.09 million sentence pairs extracted from LDC3.
We used NIST MT03 as the development set
(Dev); MT04, MT05, MT06 as the test sets.

2. WMT14 En-De. The training data consists
of 4.5 million sentence pairs from WMT14 news
translation task. We used newstest2013 as the de-
velopment set and newstest2014 as the test set.

3. WMT16 En-Ro. The training data consists
of 0.6 million sentence pairs from WMT16 news
translation task. We used newstest2015 as the de-
velopment set and newstest2016 as the test set.

We used transformer base configura-
tion (Vaswani et al., 2017) for all the models. We
run the dynamic routing for r=3 iterations. The di-
mension dc of a single capsule is 256. Either PAST

or FUTURE content was represented by J
2 = 2

capsules. Our proposed models were trained on
the top of pre-trained baseline models4. λ1 and λ2
in training objective were set to 1. In Appendix,
we provide details for the training settings.

4.1 NIST Zh-En Translation
We list the results of our experiments on NIST
Zh-En task in Table 1 concerning two different ar-
chitectures, i.e., Transformer and RNMT. As we
can see, all of our models substantially outperform
the baselines in terms of averaged BLEU score of
all the test sets. Among them, our best model
achieves 45.65 BLEU based on Transformer ar-
chitecture. We also find that redundant capsules
are helpful while discarding them leads to -0.35
BLEU degradation (45.65 vs 45.30).

3The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

4Pre-training is only for efficiency purpose. Our approach
could also learn from scratch.



Model |θ| vtrain vtest Dev MT04 MT05 MT06 Tests Avg.
Transformer 66.1m 1.00× 1.00× 45.83 46.66 43.36 42.17 44.06
GDR 68.9m 0.77× 0.94× 46.50 47.03 45.50 42.21 44.91 (+0.75)

+ LBOW 69.2m 0.70× 0.94× 47.12 48.09 45.98 42.68 45.58 (+1.42)
+ LBCA 69.4m 0.75× 0.94× 46.86 48.00 45.67 42.62 45.43 (+1.37)
+ LBOW + LBCA [OURS] 69.7m 0.67× 0.94× 47.52 48.13 45.98 42.85 45.65 (+1.59)

OURS - redundant capsules 68.7m 0.69× 0.94× 47.20 47.82 45.59 42.51 45.30 (+1.24)
RNMT 50.2m 1.00× 1.00× 35.98 37.85 36.12 35.86 36.61

+PFRNN (Zheng et al., 2018) N/A 0.54× 0.74× 37.90 40.37 36.75 36.44 37.85 (+1.24)
+AOL (Kong et al., 2019) N/A 0.57× 1.00× 37.61 40.05 37.58 36.87 38.16 (+1.55)

OURS 53.9m 0.62× 0.90× 38.10 40.87 37.50 37.00 38.45 (+1.84)

Table 1: Experiment ressuts on NIST Zh-En task, including number of parameters (|θ|, excluding word embed-
dings), training/testing speeds (vtrain/vtest), and translation results in case-insensitive BLEU.

Architectures Our approach shows consistent
effects on both Transformer and RNMT architec-
tures. In comparison to the Transformer base-
line, our model achieves at most +1.59 BLEU im-
provement (45.65 v.s 44.06), while +1.84 BLEU
improvement over RNMT baselines (38.45 v.s
36.61). These results indicate the compatibility of
our approach to different architectures.

Auxiliary Guided Losses Both the auxiliary
guided losses help our model for better learning.
The BOW constraint leads to a +0.67 improve-
ment compared to the vanilla GDR, while the ben-
efit is +0.62 for BCA. Combination of both gains
the most margins (+0.84), which means that they
can supplement each other.

Efficiency To examine the efficiency of the pro-
posed approach, we also list the relative speed of
both training and testing. Our approach is 0.67×
slower than the Transformer baseline in training
phase, however, it does not hurt the speed of test-
ing too much (0.94×). It is because the most ex-
tra computation in training phrase is related to the
softmax operations of BOW losses, the degrada-
tion of the testing efficiency is moderate.

Comparison to Other Work On the experi-
ments on RNMT architecture, we list two related
works. Zheng et al. (2018) use extra PAST and
FUTURE RNNs to capture translated and untrans-
lated contents recurrently (PFRNN), while Kong
et al. (2019) directly leverage translation adequacy
as learning reward by their proposed Adequacy-
oriented Learning (AOL). Compared to them, our
model also enjoys competitive improvements due
to the explicit separation of source contents. In
addition, PFRNN is non-trivial to adapt to Trans-
former, because it requires a recurrent process

Model En-De En-Ro
GNMT+RL (Wu et al., 2016) 24.6 N/A
ConvS2S (Gehring et al., 2017) 25.2 29.88
Transformer (Vaswani et al., 2017) 27.3 N/A

+AOL (Kong et al., 2019) 28.01 N/A
Transformer (Gu et al., 2017) N/A 31.91
Transformer 27.14 32.10
OURS 28.10 32.96

Table 2: Case-sensitive BLEU on WMT14 En-De and
WMT16 En-Ro tasks.

which fails to be compatible with parallel train-
ing of Transformer, scarifying Transformer’s effi-
ciency advantage.

4.2 WMT En-De and En-Ro Translation
We evaluated our approach on WMT14 En-De
and WMT16 En-Ro tasks. As shown in Table
2, our reproduced Transformer baseline systems
are close to the state-of-the-art results in previous
work, which guarantee the comparability of our
experiments. The results show a consistent trend
of improvements as NIST Zh-En task on WMT14
En-De (+0.96 BLEU) and WMT16 En-Ro (+0.86
BLEU) benchmarks. We also list the results of
other published research for comparison, where
our model outperforms the previous results in both
language pairs. Note that our approach also sur-
passes Kong et al. (2019) on WMT14 En-De task.
These experiments demonstrate the effectiveness
of our approach across different language pairs.

4.3 Analysis and Discussion
Our model learns PAST and FUTURE. We vi-
sualize the assignment probabilities in the last
routing iteration (Figure 4). Interestingly, there
is a clear trend that the assignment probabilities
to the PAST capsules gradually raise up, while



Figure 4: Visualization of the assignment probabilities of iterative routing. Each sub-heatmap is associated with
a target word, where the left column is the probabilities of each source words routing to the PAST capsules, and
the right one is to the FUTUREĖxamples in the red frame indicate the changes before and after the generation
of the central word. We omit the assignment probabilities associated with the redundant capsules for simplicity.
For instance, after the target word “defended” was generated, the assignment probabilities of its source translation
“辩护” changed from FUTURE to PAST. Results of “Bush“, “his”, “revive” and “economy” are similar, except a
adverse case (“plan”).

those to the FUTURE capsules reduce to around
zeros. This phenomenon is consistent with the in-
tuition that the translated contents should aggre-
gate and the untranslated should decline (Zheng
et al., 2018). The assignment weights of a specific
word change from FUTURE to PAST after being
generated. These pieces of evidence give a strong
verification that our GDR mechanism indeed has
learned to distinguish the PAST contents and FU-
TURE contents in the source-side.

Moreover, we measure how well our capsules
accumulate the expected contents by comparison
between the BOW predictions and ground-truth
target words. Accordingly, we define a top-5
overlap rate (rOL) for predicting preceding and
subsequent words are defined as follow, respec-
tively: rPOL=

1
T

∑T
t=1

|Top5t(ppre(ΩP
t ))∩y<=t|

|y<=t| , rFOL=

1
T

∑T
t=1

|Top5(T−t)(psub(Ω
F
t ))∩y>=t|

|y>=t| . The PAST

capsules achieves rPOL of 0.72, while rFOL of 0.70
for the FUTURE capsules. The results indicate
that the capsules could predict the corresponding
words to a certain extent, which implies the
capsules contain the expected information of
PAST or FUTURE contents.

Translations become better and more adequate.
To validate the translation adequacy of our model,
we use Coverage Difference Ratio (CDR) pro-
posed by Kong et al. (2019), i.e., CDR = 1 −
|Cref\Cgen|
|Cref | , where Cref and Cgen are the set of

source words covered by the reference and transla-
tion, respectively. The CDR reflects the translation
adequacy by comparing the source coverages be-

Model Transformer OURS
CDR 0.73 0.79

HUMAN EVALUATION
QUALITY 4.39±.11 4.66±.10
OVER(%) 0.03±.01 0.01±.01
UNDER(%) 3.83±.97 2.41±.80

Table 3: Evaluation on translation quality and ade-
quacy. For HUMAN evaluation, we asked three evalu-
ators to score translations from 100 source sentences,
which are randomly sampled from the testsets from
anonymous systems, the QUALITY from 1 to 5 (higher
is better), and the proportions of source words concern-
ing OVER- and UNDER-translation, respectively.

tween reference and translation. As shown in Ta-
ble 3, our approach achieves a better CDR than the
Transformer baseline, which means superiority in
translation adequacy.

Following Zheng et al. (2018), we also con-
duct subjective evaluations to validate the bene-
fit of modeling PAST and FUTURE (the last three
rows of Table 3). Surprisingly, we find that the
modern NMT model, i.e., Transformer, rarely pro-
duces over-translation but still suffers from under-
translation. Our model obtains the highest human
rating on translation quality while substantially al-
leviates the under-translation problem than Trans-
former.

Longer sentences benefit much more. We re-
port the comparison with sentence lengths (Fig-
ure 5). In all the intervals of length, our model
does generate better (Figure 5b) and longer (Fig-
ure 5a) translations. Interestingly, our approach



(a) Translation length v.s source length

(b) BLEU v.s source length

Figure 5: Comparison regarding source length.

gets a larger improvement when the input sen-
tences become longer, which are commonly
thought hard to translate. We attribute this to
the less number of under-translation cases in our
model, meaning that our model learns better trans-
lation quality and adequacy, especially for long
sentences.

Does guided dynamic routing really matter?
Despite the promising numbers of the GDR and the
auxiliary guided losses, a straightforward question
rises: will other more simple models also work if
they are just equipped with the guided losses to
recognize PAST and FUTURE contents? In other
word, does the proposed guided dynamic routing
really matter?

To answer this question, we integrate the pro-
posed auxiliary losses into two simple baselines to
guide the recognition of past and future: A MLP
classifier model (CLF) that determines if a source
word is a past word, otherwise future5; and an

5CLF is a 3-way classifier that computes the probabili-
ties pP (xi), pF (xi) and pR(xi) (they sum to 1) as past,
future and redundant weights, which is similar to Equation
6. The PAST and FUTURE representations are computed by
weighted summation, which is similar to Equation 4.

Figure 6: Comparison with simple baselines with the
same auxiliary guided loss on NIST Zh-En.

attention-based model (ATTN) that uses two indi-
vidual attention modules to retrieve past or future
parts from the source words. As shown in Table 6,
surprisingly, the simple baselines can obtain im-
provements, emphasizing the function of the pro-
posed guided losses, while there remain a consid-
erable gaps between our model and them. In fact,
the CLF is essentially a one-iteration variant of
GDR, and iterative refinement by multiple itera-
tions is necessary and effective6. And the attention
mechanism is used for feature pooling, not suit-
able for parts-to-wholes assignment7. These ex-
periments reveal that our guided dynamic routing
is a better choice to model and exploit the dynamic
PAST and FUTURE.

5 Related Work

Inadequate translation problem is a widely known
weakness of NMT models, especially when trans-
lating long sentences (Kong et al., 2019; Tu et al.,
2016; Lei et al., 2019). To alleviate this problem,
one direction is to recognize the translated and un-
translated contents, and pay more attention to un-
translated parts. Tu et al. (2016), Mi et al. (2016)
and Li et al. (2018) employ coverage vector or
coverage ratio to indicate the lexical-level cover-
age of source words. Meng et al. (2018) influence
the attentive vectors by translated/untranslated in-
formation. Our work mainly follows the path of
Zheng et al. (2018), which introduce two extra
recurrent layers in the decoder to maintain the
representations of the past and future translation
contents. However, it may be not easy to show
the direct correspondence between the source con-
tents and learned representations in the past/future

6See Appendix for analysis of iteration numbers.
7Consider an extreme case that in the end of translation,

there is no FUTURE content left, but the attention model still
produces a weighted average over all the source representa-
tions, which is nonsense. In contrast, the GDR is able to as-
sign zero probabilities to the FUTURE capsules, solving the
source of the problem.



RNN layers, nor compatible with the state-of-the-
art Transformer for the additional recurrences pre-
vent Transformer decoder from being parallelized.

Another direction is to introduce global repre-
sentations. Lin et al. (2018) model a global source
representation by deconvolution networks. Xia
et al. (2017); Zhang et al. (2018); Geng et al.
(2018) propose to provide a holistic view of tar-
get sentence by multi-pass decoding. Zhou et al.
(2019) improve Zhang et al. (2018) to a syn-
chronous bidirectional decoding fashion. Simi-
larly, Weng et al. (2019) deploy bidirectional de-
coding in interactive translation setting. Differ-
ent from these work aiming at providing static
global information in the whole translation pro-
cess, our approach models a dynamically global
(holistic) context by using capsules network to
separate source contents at every decoding steps.

Other efforts explore exploiting future hints.
Serdyuk et al. (2018) design a Twin Regularization
to encourage the hidden states in forward decoder
RNN to estimate the representations of a backward
RNN. Weng et al. (2017) require the decoder states
to not only generate the current word but also pre-
dict the remain untranslated words. Actor-critic
algorithms are employed to predict future prop-
erties (Li et al., 2017; Bahdanau et al., 2017; He
et al., 2017) by estimating the future rewards for
decision making. Kong et al. (2019) propose a pol-
icy gradient based adequacy-oriented approach to
improve translation adequacy. These methods use
future information only at the training stage, while
our model could also exploit past and future in-
formation at inference, which provides accessible
clues of translated and untranslated contents.

Capsule networks (Hinton et al., 2011) and its
associated assignment policy of dynamic rout-
ing (Hinton et al., 2011) and EM-routing (Hin-
ton et al., 2018) aims at addressing the limited
expressive ability of the parts-to-wholes assign-
ment in computer vision. In natural language pro-
cessing community, however, the capsule network
has not yet been widely investigated. Zhao et al.
(2018) testify capsule network on text classifica-
tion and Gong et al. (2018) propose to aggregate
a sequence of vectors via dynamic routing for se-
quence encoding. Dou et al. (2019) first propose
to employ capsule network in NMT using routing-
by-agreement mechanism for layer representation
aggregation. Wang (2019) develops a constant
time NMT model using capsule networks. These

studies mainly use capsule network for informa-
tion aggregation, where the capsules could have a
less interpretable meaning. In contrast, our model
learns what we expect by the aid of auxiliary learn-
ing signals, which endows our model with better
interpretability.

6 Conclusion

In this paper, we propose to recognize the trans-
lated PAST and untranslated FUTURE contents
via parts-to-wholes assignment in neural machine
translation. We propose the guided dynamic rout-
ing, a novel mechanism that explicitly separates
source words into PAST and FUTURE guided by
PRESENT target decoding status at each decoding
step. We empirically demonstrate that such ex-
plicit separation of source contents benefit neural
machine translation with considerable and consis-
tent improvements on three language pairs. Ex-
tensive analysis shows that our approach learns
to model the PAST and FUTURE as expected,
and alleviates the inadequate translation problem.
It is interesting to apply our approach to other
sequence-to-sequence tasks, e.g., text summariza-
tion (as listed in Appendix).
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